Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycoconj J ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642280

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.

2.
Viruses ; 16(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38400013

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus with high contagion and mortality rates. Heparan sulfate proteoglycans (HSPGs) are ubiquitously expressed on the surface of mammalian cells. Owing to its high negatively charged property, heparan sulfate (HS) on the surface of host cells is used by many viruses as cofactor to facilitate viral attachment and initiate cellular entry. Therefore, inhibition of the interaction between viruses and HS could be a promising target to inhibit viral infection. In the current study, the interaction between the receptor-binding domain (RBD) of MERS-CoV and heparin was exploited to assess the inhibitory activity of various sulfated glycans such as glycosaminoglycans, marine-sourced glycans (sulfated fucans, fucosylated chondroitin sulfates, fucoidans, and rhamnan sulfate), pentosan polysulfate, and mucopolysaccharide using Surface Plasmon Resonance. We believe this study provides valuable insights for the development of sulfated glycan-based inhibitors as potential antiviral agents.


Assuntos
Heparina , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Heparina/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Sulfatos/química , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Mamíferos
3.
Int J Biol Macromol ; 246: 125714, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423440

RESUMO

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) and influenza viruses have spread around the world at an unprecedented rate. Despite multiple vaccines, new variants of SARS-CoV-2 and influenza have caused a remarkable level of pathogenesis. The development of effective antiviral drugs to treat SARS-CoV-2 and influenza remains a high priority. Inhibiting viral cell surface attachment represents an early and efficient means to block virus infection. Sialyl glycoconjugates, on the surface of human cell membranes, play an important role as host cell receptors for influenza A virus and 9-O-acetyl-sialylated glycoconjugates are receptors for MERS, HKU1 and bovine coronaviruses. We designed and synthesized multivalent 6'-sialyllactose-counjugated polyamidoamine dendrimers through click chemistry at room temperature concisely. These dendrimer derivatives have good solubility and stability in aqueous solutions. SPR, a real-time analysis quantitative method for of biomolecular interactions, was used to study the binding affinities of our dendrimer derivatives by utilizing only 200 micrograms of each dendrimer. Three SARS-CoV-2 S-protein receptor binding domain (wild type and two Omicron mutants) bound to multivalent 9-O-acetyl-6'-sialyllactose-counjugated and 6'-sialyllactose-counjugated dendrimers bound to a single H3N2 influenza A virus's HA protein (A/Hong Kong/1/1968), the SPR study results suggest their potential anti-viral activities.


Assuntos
COVID-19 , Dendrímeros , Influenza Humana , Animais , Bovinos , Humanos , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/metabolismo , Dendrímeros/farmacologia , Dendrímeros/metabolismo , Influenza Humana/tratamento farmacológico , Hemaglutininas , Vírus da Influenza A Subtipo H3N2/metabolismo , Antivirais/química , Ligação Proteica
4.
Acta Biomater ; 168: 388-399, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37433361

RESUMO

Decellularized lung scaffolds and hydrogels are increasingly being utilized in ex vivo lung bioengineering. However, the lung is a regionally heterogenous organ with proximal and distal airway and vascular compartments of different structures and functions that may be altered as part of disease pathogenesis. We previously described decellularized normal whole human lung extracellular matrix (ECM) glycosaminoglycan (GAG) composition and functional ability to bind matrix-associated growth factors. We now determine differential GAG composition and function in airway, vascular, and alveolar-enriched regions of decellularized lungs obtained from normal, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) patients. Significant differences were observed in heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA) content and CS/HS compositions between both different lung regions and between normal and diseased lungs. Surface plasmon resonance demonstrated that HS and CS from decellularized normal and COPD lungs similarly bound fibroblast growth factor 2, but that binding was decreased in decellularized IPF lungs. Binding of transforming growth factor ß to CS was similar in all three groups but binding to HS was decreased in IPF compared to normal and COPD lungs. In addition, cytokines dissociate faster from the IPF GAGs than their counterparts. The differences in cytokine binding features of IPF GAGs may result from different disaccharide compositions. The purified HS from IPF lung is less sulfated than that from other lungs, and the CS from IPF contains more 6-O-sulfated disaccharide. These observations provide further information for understanding functional roles of ECM GAGs in lung function and disease. STATEMENT OF SIGNIFICANCE: Lung transplantation remains limited due to donor organ availability and need for life-long immunosuppressive medication. One solution, the ex vivo bioengineering of lungs via de- and recellularization has not yet led to a fully functional organ. Notably, the role of glycosaminoglycans (GAGs) remaining in decellularized lung scaffolds is poorly understood despite their important effects on cell behaviors. We have previously investigated residual GAG content of native and decellularized lungs and their respective functionality, and role during scaffold recellularization. We now present a detailed characterization of GAG and GAG chain content and function in different anatomical regions of normal diseased human lungs. These are novel and important observations that further expand knowledge about functional GAG roles in lung biology and disease.


Assuntos
Glicosaminoglicanos , Doença Pulmonar Obstrutiva Crônica , Humanos , Glicosaminoglicanos/metabolismo , Pulmão/patologia , Sulfatos de Condroitina , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Matriz Extracelular/metabolismo , Dissacarídeos/análise , Dissacarídeos/metabolismo
5.
Front Mol Biosci ; 10: 1151174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122559

RESUMO

Introduction: The unexpected surge of respiratory syncytial virus (RSV) cases following pandemic phase of COVID-19 has drawn much public attention. Drawing on the latest antiviral research, revisiting this heightened annual outbreak of respiratory disease could lead to new treatments. The ability of sulfated polysaccharides to compete for a variety of viruses binding to cell surface heparan sulfate, suggests several drugs that might have therapeutic potential for targeting RSV-glycosaminoglycan interactions. Methods: In the current study, the binding affinity and kinetics of two RSV glycoproteins (RSV-G protein and RSV-F protein) to heparin were investigated by surface plasmon resonance. Furthermore, solution competition studies using heparin oligosaccharides of different lengths indicated that the binding of RSV-G protein to heparin is size-dependent, whereas RSV-F protein did not show any chain length preference. Results and discussion: The two RSV glycoproteins have slightly different preferences for heparin sulfation patterns, but the N-sulfo group in heparin was most critical for the binding of heparin to both RSV-G protein and RSV-F protein. Finally, pentosan polysulfate and mucopolysaccharide polysulfate were evaluated for their inhibition of the RSV-G protein and RSV-F protein-heparin interaction, and both highly negative compounds showed strong inhibition.

6.
ACS Nano ; 17(8): 7207-7218, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042659

RESUMO

Heparan sulfate (HS) is a heterogeneous, cell-surface polysaccharide critical for transducing signals essential for mammalian development. Imaging of signaling proteins has revealed how their localization influences their information transfer. In contrast, the contribution of the spatial distribution and nanostructure of information-rich, signaling polysaccharides like HS is not known. Using expansion microscopy (ExM), we found striking changes in HS nanostructure occur as human pluripotent stem (hPS) cells differentiate, and these changes correlate with growth factor signaling. Our imaging studies show that undifferentiated hPS cells are densely coated with HS displayed as hair-like protrusions. This ultrastructure can recruit fibroblast growth factor for signaling. When the hPS cells differentiate into the ectoderm lineage, HS is localized into dispersed puncta. This striking change in HS distribution coincides with a decrease in fibroblast growth factor binding to neural cells. While developmental variations in HS sequence were thought to be the primary driver of alterations in HS-mediated growth factor signaling, our high-resolution images indicate a role for the HS nanostructure. Our study highlights the utility of high-resolution glycan imaging using ExM. In the case of HS, we found that changes in how the polysaccharide is displayed link to profound differences in growth factor binding.


Assuntos
Heparitina Sulfato , Células-Tronco Pluripotentes , Animais , Humanos , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Fatores de Crescimento de Fibroblastos , Mamíferos/metabolismo
7.
Carbohydr Polym ; 311: 120779, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028882

RESUMO

Heparin is a commonly used anticoagulant drug, derived from the tissues of animals including pigs, cows, and sheep. Measuring heparin concentration in plasma is challenging due to its complex molecular structure. Existing methods rely on measuring heparin's anticoagulant activity, which provides pharmacodynamic (PD) data but not pharmacokinetic (PK) data, measuring concentration over time. To overcome this limitation, we used liquid chromatography-mass spectrometry (LC-MS) and the multiple reaction monitoring (MRM) method to directly measure heparin's concentration in non-human primates after administering porcine, bovine, and ovine heparin. A protocol was developed to enable an MRM method for application to small plasma volumes without purification. The PK data obtained from LC-MS are then compared with the data obtained using the Heparin Red assay and the PD data determined using biochemical clinical assays. Results showed that LC-MS and Heparin Red assay measurements closely correlated with unfractionated heparin's biological activities, supporting the use of mass spectra and dye-binding assays to determine heparin levels in plasma. This study builds a way for the measurement of heparin concentration in plasma, which could lead to an improved understanding of heparin's metabolism and dosing safety.


Assuntos
Anticoagulantes , Heparina , Feminino , Animais , Bovinos , Ovinos , Suínos , Heparina/química , Anticoagulantes/farmacologia , Anticoagulantes/química , Primatas/metabolismo , Cromatografia Líquida , Espectrometria de Massas
8.
Exp Neurol ; 361: 114313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572372

RESUMO

In this study we investigated the effects of a neonatal handling protocol that mimics the handling of sham control pups in protocols of neonatal exposure to brain insults on dendritic arborization and glycosaminoglycan (GAG) levels in the developing brain. GAGs are long, unbranched polysaccharides, consisting of repeating disaccharide units that can be modified by sulfation at specific sites and are involved in modulating neuronal plasticity during brain development. In this study, male and female Sprague-Dawley rats underwent neonatal handling daily between post-natal day (PD)4 and PD9, with brains analyzed on PD9. Neuronal morphology and morphometric analysis of the apical and basal dendritic trees of CA1 hippocampal pyramidal neurons were carried out by Golgi-Cox staining followed by neuron tracing and analysis with the software Neurolucida. Chondroitin sulfate (CS)-, Hyaluronic Acid (HA)-, and Heparan Sulfate (HS)-GAG disaccharide levels were quantified in the hippocampus by Liquid Chromatography/Mass Spectrometry analyses. We found sex by neonatal handling interactions on several parameters of CA1 pyramidal neuron morphology and in the levels of HS-GAGs, with females, but not males, showing an increase in both dendritic arborization and HS-GAG levels. We also observed increased expression of glucocorticoid receptor gene Nr3c1 in the hippocampus of both males and females following neonatal handling suggesting that both sexes experienced a similar stress during the handling procedure. This is the first study to show sex differences in two parameters of brain plasticity, CA1 neuron morphology and HS-GAG levels, following handling stress in neonatal rats.


Assuntos
Glicosaminoglicanos , Caracteres Sexuais , Animais , Feminino , Ratos , Masculino , Glicosaminoglicanos/química , Dissacarídeos , Ratos Sprague-Dawley , Hipocampo , Sulfatos de Condroitina , Heparitina Sulfato
9.
Viruses ; 14(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36560700

RESUMO

The now prevalent Omicron variant and its subvariants/sub-lineages have led to a significant increase in COVID-19 cases and raised serious concerns about increased risk of infectivity, immune evasion, and reinfection. Heparan sulfate (HS), located on the surface of host cells, plays an important role as a co-receptor for virus-host cell interaction. The ability of heparin and HS to compete for binding of the SARS-CoV-2 spike (S) protein to cell surface HS illustrates the therapeutic potential of agents targeting protein-glycan interactions. In the current study, phylogenetic tree of variants and mutations in S protein receptor-binding domain (RBD) of Omicron BA.2.12.1, BA.4 and BA.5 were described. The binding affinity of Omicron S protein RBD to heparin was further investigated by surface plasmon resonance (SPR). Solution competition studies on the inhibitory activity of heparin oligosaccharides and desulfated heparins at different sites on S protein RBD-heparin interactions revealed that different sub-lineages tend to bind heparin with different chain lengths and sulfation patterns. Furthermore, blind docking experiments showed the contribution of basic amino acid residues in RBD and sulfo groups and carboxyl groups on heparin to the interaction. Finally, pentosan polysulfate and mucopolysaccharide polysulfate were evaluated for inhibition on the interaction of heparin and S protein RBD of Omicron BA.2.12.1, BA.4/BA.5, and both showed much stronger inhibition than heparin.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Filogenia , SARS-CoV-2/genética , Heparina , Heparitina Sulfato , Comunicação Celular , Ligação Proteica
10.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144634

RESUMO

Monkeypox virus (MPXV), a member of the Orthopoxvirus genus, has begun to spread into many countries worldwide. While the prevalence of monkeypox in Central and Western Africa is well-known, the recent rise in the number of cases spread through intimate personal contact, particularly in the United States, poses a grave international threat. Previous studies have shown that cell-surface heparan sulfate (HS) is important for vaccinia virus (VACV) infection, particularly the binding of VACV A27, which appears to mediate the binding of virus to cellular HS. Some other glycosaminoglycans (GAGs) also bind to proteins on Orthopoxviruses. In this study, by using surface plasmon resonance, we demonstrated that MPXV A29 protein (a homolog of VACV A27) binds to GAGs including heparin and chondroitin sulfate/dermatan sulfate. The negative charges on GAGs are important for GAG-MPXV A29 interaction. GAG analogs, pentosan polysulfate and mucopolysaccharide polysulfate, show strong inhibition of MPXV A29-heparin interaction. A detailed understanding on the molecular interactions involved in this disease should accelerate the development of therapeutics and drugs for the treatment of MPXV.


Assuntos
Sulfatos de Condroitina , Vírus da Varíola dos Macacos , Dermatan Sulfato , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Vírus da Varíola dos Macacos/metabolismo , Poliéster Sulfúrico de Pentosana , Ressonância de Plasmônio de Superfície , Vírus Vaccinia
11.
Kidney Int ; 102(2): 261-279, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35513125

RESUMO

Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4 and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 co-receptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Heparina , Proteínas Klotho , Insuficiência Renal Crônica , Animais , Cardiomegalia , Glucuronidase/metabolismo , Heparina/metabolismo , Humanos , Proteínas Klotho/metabolismo , Camundongos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia
12.
Microbiol Spectr ; 10(3): e0229621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35499324

RESUMO

Sponge microbiomes are typically profiled by analyzing the community DNA of whole tissues, which does not distinguish the taxa residing within sponge cells from extracellular microbes. To uncover the endosymbiotic microbiome, we separated the sponge cells to enrich the intracellular microbes. The intracellular bacterial community of sponge Euryspongia arenaria was initially assessed by amplicon sequencing, which indicated that it hosts three unique phyla not found in the extracellular and bulk tissue microbiomes. These three phyla account for 66% of the taxonomically known genera in the intracellular microbiome. The shotgun metagenomic analysis extended the taxonomic coverage to viruses and eukaryotes, revealing the most abundant signature taxa specific to the intracellular microbiome. Functional KEGG pathway annotation demonstrated that the endosymbiotic microbiome hosted the greatest number of unique gene orthologs. The pathway profiles distinguished the intra- and extracellular microbiomes from the tissue and seawater microbiomes. Carbohydrate-active enzyme analysis further discriminated each microbiome based on their representative and dominant enzyme families. One pathway involved in digestion system and family esterase had a consistently higher level in intracellular microbiome and could statistically differentiate the intracellular microbiome from the others, suggesting that triacylglycerol lipases could be the key functional component peculiar to the endosymbionts. The identified higher abundance of lipase-related eggNOG categories further supported the lipid-hydrolyzing metabolism of endosymbiotic microbiota. Pseudomonas members, reported as lipase-producing bacteria, were only in the endosymbiotic microbiome, meanwhile Pseudomonas also showed a greater abundance intracellularly. Our study aided a comprehensive sponge microbiome that demonstrated the taxonomic and functional specificity of endosymbiotic microbiota. IMPORTANCE Sponges host abundant microbial symbionts that can produce an impressive number of novel bioactive metabolites. However, knowledge on intracellular (endosymbiotic) microbiota is scarce. We characterize the composition and function of the endosymbiotic microbiome by separation of sponge cells and enrichment of intracellular microbes. We uncover a noteworthy number of taxa exclusively in the endosymbiotic microbiome. We unlock the unique pathways and enzymes of endosymbiotic taxa. This study achieves a more comprehensive sponge microbial community profile, which demonstrates the structural and functional specificity of the endosymbiotic microbiome. Our findings not only open the possibility to reveal the low abundant and the likely missed microbiota when directly sequencing the sponge bulk tissues, but also warrant future in-depth exploration within single sponge cells.


Assuntos
Microbiota , Poríferos , Animais , Lipase/genética , Filogenia , Poríferos/genética , Poríferos/microbiologia , RNA Ribossômico 16S/genética
13.
Glycobiology ; 32(8): 720-734, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35552402

RESUMO

INTRODUCTION: The endothelial glycocalyx regulates vascular permeability, inflammation, and coagulation, and acts as a mechanosensor. The loss of glycocalyx can cause endothelial injury and contribute to several microvascular complications and, therefore, may promote diabetic retinopathy. Studies have shown a partial loss of retinal glycocalyx in diabetes, but with few molecular details of the changes in glycosaminoglycan (GAG) composition. Therefore, the purpose of our study was to investigate the effect of hyperglycemia on GAGs of the retinal endothelial glycocalyx. METHODS: GAGs were isolated from rat retinal microvascular endothelial cells (RRMECs), media, and retinas, followed by liquid chromatography-mass spectrometry assays. Quantitative real-time polymerase chain reaction was used to study mRNA transcripts of the enzymes involved in GAG biosynthesis. RESULTS AND CONCLUSIONS: Hyperglycemia significantly increased the shedding of heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA). There were no changes to the levels of HS in RRMEC monolayers grown in high-glucose media, but the levels of CS and HA decreased dramatically. Similarly, while HA decreased in the retinas of diabetic rats, the total GAG and CS levels increased. Hyperglycemia in RRMECs caused a significant increase in the mRNA levels of the enzymes involved in GAG biosynthesis (including EXTL-1,2,3, EXT-1,2, ChSY-1,3, and HAS-2,3), with these increases potentially being compensatory responses to overall glycocalyx loss. Both RRMECs and retinas of diabetic rats exhibited glucose-induced alterations in the disaccharide compositions and sulfation of HS and CS, with the changes in sulfation including N,6-O-sulfation on HS and 4-O-sulfation on CS.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Animais , Células Cultivadas , Sulfatos de Condroitina/química , Células Endoteliais , Glucose/farmacologia , Glicosaminoglicanos/química , Heparitina Sulfato/química , Ácido Hialurônico/química , RNA Mensageiro/genética , Ratos , Retina
14.
Cell Mol Life Sci ; 79(4): 199, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35312866

RESUMO

Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.


Assuntos
Glicosaminoglicanos/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/fisiologia , Metabolismo dos Carboidratos/genética , Sequência de Carboidratos/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Deleção de Genes , Técnicas de Silenciamento de Genes , Complexo de Golgi/patologia , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Via Secretória/genética , Sulfatos/metabolismo
15.
Mar Drugs ; 19(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940684

RESUMO

The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Desoxiaçúcares/farmacologia , Mananas/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Alga Marinha , Antivirais/uso terapêutico , Organismos Aquáticos , Desoxiaçúcares/uso terapêutico , Humanos , Mananas/uso terapêutico , Extratos Vegetais/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Matrix Biol ; 103-104: 37-57, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34653670

RESUMO

Heparan sulfate 3-O-sulfotransferases generate highly sulfated but rare 3-O-sulfated heparan sulfate (HS) epitopes on cell surfaces and in the extracellular matrix. Previous ex vivo experiments suggested functional redundancy exists among the family of seven enzymes but that Hs3st3a1 and Hs3st3b1 sulfated HS increases epithelial FGFR signaling and morphogenesis. Single-cell RNAseq analysis of control SMGs identifies increased expression of Hs3st3a1 and Hs3st3b1 in endbud and myoepithelial cells, both of which are progenitor cells during development and regeneration. To analyze their in vivo functions, we generated both Hs3st3a1-/- and Hs3st3b1-/- single knockout mice, which are viable and fertile. Salivary glands from both mice have impaired fetal epithelial morphogenesis when cultured with FGF10. Hs3st3b1-/- mice have reduced intact SMG branching morphogenesis and reduced 3-O-sulfated HS in the basement membrane. Analysis of HS biosynthetic enzyme transcription highlighted some compensatory changes in sulfotransferases expression early in development. The overall glycosaminoglycan composition of adult control and KO mice were similar, although HS disaccharide analysis showed increased N- and non-sulfated disaccharides in Hs3st3a1-/- HS. Analysis of adult KO gland function revealed normal secretory innervation, but without stimulation there was an increase in frequency of drinking behavior in both KO mice, suggesting basal salivary hypofunction, possibly due to myoepithelial dysfunction. Understanding how 3-O-sulfation regulates myoepithelial progenitor function will be important to manipulate HS-binding growth factors to enhance tissue function and regeneration.


Assuntos
Heparitina Sulfato , Sulfotransferases , Animais , Fatores de Crescimento de Fibroblastos , Camundongos , Morfogênese , Glândulas Salivares , Sulfotransferases/genética
17.
Adv Exp Med Biol ; 1325: 103-116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495531

RESUMO

Glycosaminoglycans (GAGs) are important constituents of human glycome. They are negatively charged unbranched polysaccharides that are usually covalently attached to proteins, forming glycan-protein conjugates, called proteoglycans. Glycosaminoglycans play critical roles in numerous biological processes throughout individual development and are also involved in the pathological processes of various diseases. Based on their remarkable bioactivities and their universal involvement in disease progression, GAGs are applied as therapeutics or are being targeted or used in treating diseases. In this chapter, we introduce the characteristics of the four classes of GAGs that constitute the glycosaminoglycan family. The pathological roles of glycosaminoglycans in major diseases including innate disease, infectious disease, and cancer are discussed. The application of GAGs and their mimetics as therapeutics is introduced, as well as those therapeutic methods developed based on GAGs' role in pathogenesis. In addition, we provide a brief and overall lookback at the history of GAG research and sort out some critical techniques that facilitated GAG and glycomics studies.


Assuntos
Glicômica , Glicosaminoglicanos , Biomimética , Humanos , Polissacarídeos , Proteoglicanas
18.
In Vitro Cell Dev Biol Anim ; 57(5): 539-549, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33948851

RESUMO

Sponges are among the most primitive multicellular organisms and well-known as a major source of marine natural products. Cultivation of sponge cells has long been an attractive topic due to the prominent evolutionary and cytological significance of sponges and as a potential approach to supply sponge-derived compounds. Sponge cell culture is carried out through culturing organized cell aggregates called 'primmorphs.' Most research culturing sponge cells has used unfractionated cells to develop primmorphs. In the current study, a tropical marine sponge Axinella sp., which contains the bioactive alkaloids, debromohymenialdisine (DBH), and hymenialdisine (HD), was used to obtain fractionated cells and the corresponding primmorphs. These alkaloids, DBH and HD, reportedly show pharmacological activities for treating osteoarthritis and Alzheimer's disease. Three different cell fractions were obtained, including enriched spherulous cells, large mesohyl cells, and small epithelial cells. These cell fractions were cultivated separately, forming aggregates that later developed into different kinds of primmorphs. The three kinds of primmorphs obtained were compared as regards to appearance, morphogenesis, and cellular composition. Additionally, the amount of alkaloid in the primmorphs-culture system was examined over a 30-d culturing period. During the culturing of enriched spherulous cells and developed primmorphs, the total amount of alkaloid declined notably. In addition, the speculation of alkaloid secretion and some phenomena that occurred during cell culturing are discussed.


Assuntos
Axinella/citologia , Azepinas/metabolismo , Pirróis/metabolismo , Animais , Axinella/metabolismo , Azepinas/farmacologia , Fracionamento Celular , Células Cultivadas , Pirróis/farmacologia
19.
Carbohydr Polym ; 260: 117797, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712145

RESUMO

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has resulted in a pandemic and continues to spread at an unprecedented rate around the world. Although a vaccine has recently been approved, there are currently few effective therapeutics to fight its associated disease in humans, COVID-19. SARS-CoV-2 and the related severe acute respiratory syndrome (SARS-CoV-1), and Middle East respiratory syndrome (MERS-CoV) result from zoonotic respiratory viruses that have bats as the primary host and an as yet unknown secondary host. While each of these viruses has different protein-based cell-surface receptors, each rely on the glycosaminoglycan, heparan sulfate as a co-receptor. In this study we compare, for the first time, differences and similarities in the structure of heparan sulfate in human and bat lungs. Furthermore, we show that the spike glycoprotein of COVID-19 binds 3.5 times stronger to human lung heparan sulfate than bat lung heparan sulfate.


Assuntos
Heparitina Sulfato/metabolismo , Pulmão/química , Receptores Virais/metabolismo , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Quirópteros , Feminino , Heparitina Sulfato/química , Heparitina Sulfato/isolamento & purificação , Humanos , Masculino , Estrutura Molecular , Peso Molecular , Ligação Proteica , Receptores Virais/química , Receptores Virais/isolamento & purificação
20.
J Histochem Cytochem ; 69(2): 121-135, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32623943

RESUMO

Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG-ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.


Assuntos
Glicosaminoglicanos/análise , Proteoglicanas/química , Biologia Computacional , Humanos , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...